### metal-organic compounds

 $\beta = 73.492 \ (1)^{\circ}$ 

 $\gamma = 64.439 (1)^{\circ}$ V = 2754.7 (3) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.23 \times 0.16 \times 0.07 \ \mathrm{mm}$ 

21086 measured reflections

10030 independent reflections

8170 reflections with  $I > 2\sigma(I)$ 

H-atom parameters constrained

 $\mu = 0.47 \text{ mm}^{-1}$ 

T = 298 K

 $R_{\rm int} = 0.021$ 

10 restraints

 $\Delta \rho_{\text{max}} = 0.66 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{\text{min}} = -0.29 \text{ e } \text{\AA}^{-3}$ 

Z = 2

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

### Tris(1,10-phenanthroline)cadmium 3,3'dicarboxy-4,4'-diazenediyldibenzoate– 4,4'-diazenediyldiphthalic acid– methanol (1/0.5/1)

#### Jun Wang,<sup>a,b</sup>\* Lu Lu,<sup>a,b</sup> Wu Wei-Ping,<sup>a,b</sup> Xi-Yang He<sup>b</sup> and Wang Tao<sup>b</sup>

<sup>a</sup>Institute of Functionalized Materials, Sichuan University of Science and Engineering, Zigong 643000, People's Republic of China, and <sup>b</sup>College of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong 643000, People's Republic of China

Correspondence e-mail: scwangjun2011@126.com

Received 9 May 2011; accepted 30 May 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.005 Å; some non-H atoms missing; disorder in main residue; R factor = 0.035; wR factor = 0.103; data-to-parameter ratio = 12.7.

In the title compoud,  $[Cd(C_{12}H_8N_2)_3](C_{16}H_8N_2O_8) \cdot 0.5C_{16}H_{10}$ -N<sub>2</sub>O<sub>8</sub>·CH<sub>3</sub>OH, the Cd<sup>II</sup> atom has a distorted octahedral coordination formed by six N atoms from three separate phenanthroline ligands. One of the 4,4'-diazenediyldiphthalic acid molecules is arranged around an inversion center and possesses two -COOH groups, while the other is partially deprotonated and is a dianion for charge balance. It can be noted that, in the undeprotonated acid, the -COOH groups are disordered over two positions by rotation around the C-C bond linking the -COOH group to the phenyl ring. Surprisingly, the H atom is not involved in the disorder. In the dianion, the remaining H atom is located between the two COO groups. These deprotonated and undeprotonated molecules are linked by  $O-H \cdots O$  hydrogen bonds, forming a chain developing parallel to the [111] direction. The methanol solvent molecule is highly disordered; it was not considered in the final model by elimination of its contribution from the intensity data.

#### **Related literature**

For background to crystal engineering, see: Yaghi *et al.* (2003); Kitagawa *et al.* (2004). For rigid carboxylic acids, see: Banerjee *et al.* (2008); Liu, Huang *et al.* (2011). For related chelating *N*-donor ligands, see: Liu, Jia & Wang (2011); Liu (2011); Breneman & Parker (1993).



#### Experimental

Crystal data

 $[Cd(C_{12}H_8N_2)_3](C_{16}H_8N_2O_8) - 0.5C_{16}H_{10}N_2O_8 \cdot CH_4O$   $M_r = 1220.43$ Triclinic,  $p\overline{1}$  a = 13.6902 (9) Å b = 13.7659 (9) Å c = 16.9518 (11) Å  $\alpha = 79.022$  (1)°

#### Data collection

```
Bruker APEXII area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
T_{\rm min} = 0.900, T_{\rm max} = 0.968
```

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.035$ |
|---------------------------------|
| $wR(F^2) = 0.103$               |
| S = 1.07                        |
| 9876 reflections                |
| 775 parameters                  |

| Table 1                    |     |
|----------------------------|-----|
| Hydrogen-bond geometry (Å, | °). |

| $D - H \cdot \cdot \cdot A$   | D-H          | $H \cdot \cdot \cdot A$ | $D \cdots A$           | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-------------------------------|--------------|-------------------------|------------------------|--------------------------------------|
| O6−H6A···O7<br>O10−H10A···O11 | 1.15<br>1.10 | 1.24<br>1.41            | 2.386 (4)<br>2.367 (4) | 174<br>141                           |

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008) and *PLATON* (Spek, 2009); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996), *ORTEP-3* for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006, 2010); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We express our thanks for the great contribution of Professor Matthias Zeller to the refinement. The authors acknowledge financial assistance from Sichuan University of Science and Engineering, the Institute of Functionalized Materials (grant Nos. 2009xjkpL003 and 2010XJKYL005), the

### metal-organic compounds

Education Committee of Sichuan Province (grant No. 09ZA057), and the Committee of Science and Technology of Sichuan Province (grant No. 2010GZ0130).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2688).

#### References

- Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, F., O'Keffe, M. & Yaghi, O. M. (2008). *Science*, **319**, 939–943.
- Breneman, G. L. & Parker, O. J. (1993). Polyhedron, 12, 891-895.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.
- Liu, J. Q. (2011). J. Coord. Chem. 64, 1503-1512.
- Liu, J. Q., Huang, Y. S., Zhao, Y. Y. & Jia, Z. B. (2011). Cryst. Growth Des. 11, 569–574.
- Liu, J. Q., Jia, Z. B. & Wang, Y. Y. (2011). J. Mol. Struct. 987, 126-131.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). *Nature (London)*, **423**, 705–714.

Acta Cryst. (2011). E67, m867-m868 [doi:10.1107/S160053681102068X]

# Tris(1,10-phenanthroline)cadmium3,3'-dicarboxy-4,4'-diazenediyldibenzoate-4,4'-diazene-diyldiphthalic acid-methanol (1/0.5/1)3,3'-dicarboxy-4,4'-diazenediyldibenzoate-4,4'-diazene-

#### J. Wang, L. Lu, W. Wei-Ping, X.-Y. He and W. Tao

#### Comment

In the past decade, much progress has been achieved in the synthesis and structural characterization of metal-organic frameworks(MOFs) due to their potential applications (Yaghi *et al.*, 2003; Kitagawa *et al.*, 2004). Generally, the multidentate organic ligands containing coordination sites of O donors are widely used as building blocks in the construction of MOFs (Banerjee *et al.*, 2008; Liu, Huang *et al.*, 2011). On the other hand, 1, 10-Phenanthroline, one of those ligands, has usually been used to construct a great variety of structurally interesting entities, such as monomers(Breneman & Parker, 1993; Liu, Jia & Wang, 2011; Liu, 2011). Herein, we are interested in self-assemblies of Cd(II) ion with H<sub>4</sub>L and phenanthroline, which led to the preparation of the title compound.

In the asymmetric unit of title compound, there are one Cd(II) ion, three phen ligands, one deprotonated  $H_2L$ , a half undeprotonated  $H_4L$  ligand and one methanol molecule. As shown in Fig. 1. The Cd(II) atom is six-coordinated in a slightly distorted octahedral geometry defined by six N atoms from three different phen ligands. Interestingly, one of the (4,4'diazenediyldiphthalic acid) is arranged around inversion center and possess two COOH groups, while the other is partially deprotonated and it is a dianion for balancing the charge. The Cd-N bond distances range from 2.329 (3) to 2.366 (3)Å. The N4-Cd1-N5 and N1-Cd1-N5 bond angles are 90.58 (9) and 93.19 (9)°, respectively. From the above values, it appears that the three phen ligands are nearly perpendicular to each other.

In H<sub>2</sub>L, the acidic H atom is nearly engaged in a bridging  $O \cdots H \cdots O$  interactions (Table 1). Furthermore, The molecules of H<sub>4</sub>L are linked by O-H…O hydrogen bonds to two H<sub>2</sub>L on both sides, forming a one-dimensional chain with void parallel to the [1 1 1] direction (Fig. 2, Table 1). The disordered methanol molecule is located in the void. The Cd(II) complexes are antiparallel to the above chains. The above hydrogen bonds could participate to the stabilization of the title complex.

#### Experimental

The Cd(AC)<sub>2</sub>.H<sub>2</sub>O(19mg, 0.1mmol) was added dropwise slowly to ligand H<sub>4</sub>L(16mg, 0.06mmol) and phen (20mg, 0.01mmol) methanol solution(15mL). The pH of the mixture solution was adjusted to about 3.5 with 2N HAC solution. Then, the reaction mixture was stirred for 15 days at room temperature. Crystals of (I) were obtained at room temperature.

#### Refinement

The occupancy of the COOH group was determined by fixing the sum of the occupancy to 1 and by using overall isotropic thermal parameter for O atoms and restraining the C-O distances by using the SAME instruction. The ratio was found to be equal to 0.65/0.35. Once the occupancy has been determined, the occupancy factors were fixed and the Uiso for the O atoms was refined freely then anisotropic thermal parameters were introduced.

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å, and  $U_{iso}(H) = 1.2U_{eq}(C)$ .

All H atoms attached to the COOH groups were found in difference Fourier maps, and then they were refined freely with  $U_{iso}(H) = 1.2U_{eq}(C)$ . In the last cycles of refinement they were treated as riding on their parent O atoms.

The unit cell contains a certain amount of methanol molecules. However, these molecules appear to be highly disordered and it was difficult to model their positions and distribution reliably. Therefore, the SQUEEZE function of PLATON (van der Sluis & Spek, 1990; Spek, 2003) was used to eliminate the contribution of the electron density in the solvent region from the intensity data, and the solvent-free model was emplyed from the final refinement.

There are two large cavities of about 113 \%A^3^ per unitl cell. PLATON estimated that each cavity contains 17 electrons which may correspond to a solvent molecule of methanol as suggested by chemical analyses.

#### **Figures**



Fig. 1. Molecular structure of (I), showing the atom-labelling scheme. Thermal displacement are drawn at the 30% probability level. Only the major components of the disordered carboxylate groups are represented. H atoms have been omitted for clarity. [symmetric codes: -x+1, -y, -z+1].



Fig. 2. View of the 1D chain formed by the O-H…O hydrogen bonds linking the H4L and H2L molecules. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity.

# Tris(1,10-phenanthroline)cadmium 3,3'-dicarboxy-4,4'-diazenediyldibenzoate- 4,4'-diazenediyldiphthalic acid-methanol (1/0.5/1)

#### Crystal data

| $[Cd(C_{12}H_8N_2)_3](C_{16}H_8N_2O_8)\cdot 0.5C_{16}H_{10}N_2O_8\cdot CH_4O$ | Z = 2                                                 |
|-------------------------------------------------------------------------------|-------------------------------------------------------|
| $M_r = 1220.43$                                                               | F(000) = 1244                                         |
| Triclinic, $pT$                                                               | $D_{\rm x} = 1.471 {\rm ~Mg~m^{-3}}$                  |
| Hall symbol: -P 1                                                             | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| a = 13.6902 (9)  Å                                                            | Cell parameters from 10030 reflections                |
| b = 13.7659 (9)  Å                                                            | $\theta = 2.4 - 25.2^{\circ}$                         |
| c = 16.9518 (11)  Å                                                           | $\mu = 0.47 \text{ mm}^{-1}$                          |
| $\alpha = 79.022 \ (1)^{\circ}$                                               | <i>T</i> = 298 K                                      |
| $\beta = 73.492 (1)^{\circ}$                                                  | Block, red                                            |
| $\gamma = 64.439 \ (1)^{\circ}$                                               | $0.23\times0.16\times0.07~mm$                         |
| $V = 2754.7(3) \text{ Å}^3$                                                   |                                                       |

#### Data collection

| 10030 independent reflections                                             |
|---------------------------------------------------------------------------|
| 8170 reflections with $I > 2\sigma(I)$                                    |
| $R_{\rm int} = 0.021$                                                     |
| $\theta_{\text{max}} = 25.4^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$ |
| $h = -16 \rightarrow 16$                                                  |
| $k = -16 \rightarrow 16$                                                  |
| $l = -20 \rightarrow 20$                                                  |
|                                                                           |

#### Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods                            |
|---------------------------------|-------------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                                      |
| $R[F^2 > 2\sigma(F^2)] = 0.035$ | Hydrogen site location: inferred from neighbouring sites                                  |
| $wR(F^2) = 0.103$               | H-atom parameters constrained                                                             |
| <i>S</i> = 1.07                 | $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0643P)^{2}]$<br>where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ |
| 9876 reflections                | $(\Delta/\sigma)_{\rm max} = 0.002$                                                       |
| 775 parameters                  | $\Delta \rho_{max} = 0.66 \text{ e } \text{\AA}^{-3}$                                     |
| 10 restraints                   | $\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$                                |
|                                 |                                                                                           |

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \text{sigma}(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x             | У             | Ζ             | $U_{\rm iso}$ */ $U_{\rm eq}$ | Occ. (<1) |
|-----|---------------|---------------|---------------|-------------------------------|-----------|
| Cd1 | 0.194625 (14) | 0.318919 (15) | 0.770925 (10) | 0.05192 (9)                   |           |
| N1  | 0.2000 (2)    | 0.34134 (18)  | 0.90344 (14)  | 0.0644 (6)                    |           |
| N2  | 0.01626 (18)  | 0.36033 (18)  | 0.85645 (13)  | 0.0572 (5)                    |           |
| N3  | 0.15295 (17)  | 0.48840 (18)  | 0.69513 (12)  | 0.0523 (5)                    |           |
| N4  | 0.36188 (17)  | 0.33952 (19)  | 0.70773 (13)  | 0.0564 (5)                    |           |
| N5  | 0.29240 (19)  | 0.12915 (19)  | 0.78538 (14)  | 0.0620 (6)                    |           |

| N6  | 0.16334 (18) | 0.2430 (2)  | 0.67404 (13) | 0.0606 (6)  |
|-----|--------------|-------------|--------------|-------------|
| C1  | 0.2886 (3)   | 0.3350 (3)  | 0.9249 (2)   | 0.0823 (10) |
| H1  | 0.3524       | 0.3293      | 0.8841       | 0.099*      |
| C2  | 0.2888 (4)   | 0.3367 (3)  | 1.0074 (3)   | 0.1024 (14) |
| H2  | 0.3520       | 0.3315      | 1.0212       | 0.123*      |
| C3  | 0.1961 (5)   | 0.3460 (3)  | 1.0661 (2)   | 0.1059 (16) |
| H3  | 0.1958       | 0.3469      | 1.1209       | 0.127*      |
| C4  | 0.0990 (4)   | 0.3544 (2)  | 1.04590 (18) | 0.0860 (12) |
| C5  | -0.0037 (5)  | 0.3647 (3)  | 1.1045 (2)   | 0.1116 (18) |
| Н5  | -0.0082      | 0.3654      | 1.1602       | 0.134*      |
| C6  | -0.0918 (5)  | 0.3733 (3)  | 1.0815 (3)   | 0.1185 (18) |
| H6  | -0.1566      | 0.3798      | 1.1214       | 0.142*      |
| C7  | -0.0899 (3)  | 0.3729 (2)  | 0.9969 (2)   | 0.0820 (10) |
| C8  | -0.1819 (3)  | 0.3822 (3)  | 0.9691 (3)   | 0.1015 (14) |
| H8  | -0.2486      | 0.3894      | 1.0067       | 0.122*      |
| C9  | -0.1726 (3)  | 0.3806 (3)  | 0.8892 (3)   | 0.0946 (12) |
| Н9  | -0.2326      | 0.3864      | 0.8704       | 0.114*      |
| C10 | -0.0726 (2)  | 0.3703 (2)  | 0.8339 (2)   | 0.0712 (8)  |
| H10 | -0.0679      | 0.3703      | 0.7781       | 0.085*      |
| C11 | 0.0094 (3)   | 0.3614 (2)  | 0.93751 (16) | 0.0601 (7)  |
| C12 | 0.1051 (3)   | 0.3525 (2)  | 0.96180 (15) | 0.0626 (8)  |
| C13 | 0.0526 (2)   | 0.5588 (2)  | 0.68553 (16) | 0.0583 (7)  |
| H13 | -0.0080      | 0.5412      | 0.7110       | 0.070*      |
| C14 | 0.0339 (3)   | 0.6570 (3)  | 0.63954 (18) | 0.0697 (8)  |
| H14 | -0.0374      | 0.7036      | 0.6338       | 0.084*      |
| C15 | 0.1219 (3)   | 0.6841 (3)  | 0.60295 (18) | 0.0750 (9)  |
| H15 | 0.1111       | 0.7495      | 0.5713       | 0.090*      |
| C16 | 0.2285 (3)   | 0.6139 (2)  | 0.61277 (17) | 0.0660 (7)  |
| C17 | 0.3245 (3)   | 0.6384 (3)  | 0.5782 (2)   | 0.0926 (11) |
| H17 | 0.3167       | 0.7045      | 0.5485       | 0.111*      |
| C18 | 0.4240 (3)   | 0.5685 (4)  | 0.5879 (3)   | 0.0999 (12) |
| H18 | 0.4841       | 0.5879      | 0.5663       | 0.120*      |
| C19 | 0.4426 (3)   | 0.4638 (3)  | 0.63071 (19) | 0.0755 (9)  |
| C20 | 0.5488 (3)   | 0.3843 (4)  | 0.6386 (2)   | 0.0932 (12) |
| H20 | 0.6116       | 0.3996      | 0.6170       | 0.112*      |
| C21 | 0.5585 (3)   | 0.2864 (4)  | 0.6775 (2)   | 0.0920 (11) |
| H21 | 0.6279       | 0.2326      | 0.6811       | 0.110*      |
| C22 | 0.4630 (2)   | 0.2680 (3)  | 0.71172 (19) | 0.0726 (8)  |
| H22 | 0.4705       | 0.2009      | 0.7394       | 0.087*      |
| C23 | 0.3510 (2)   | 0.4370 (2)  | 0.66705 (15) | 0.0566 (6)  |
| C24 | 0.2412 (2)   | 0.5148 (2)  | 0.65882 (14) | 0.0535 (6)  |
| C25 | 0.3575 (3)   | 0.0734 (3)  | 0.8377 (2)   | 0.0772 (9)  |
| H25 | 0.3637       | 0.1106      | 0.8752       | 0.093*      |
| C26 | 0.4165 (3)   | -0.0373 (3) | 0.8390 (3)   | 0.0953 (12) |
| H26 | 0.4623       | -0.0732     | 0.8758       | 0.114*      |
| C27 | 0.4066 (3)   | -0.0921 (3) | 0.7864 (3)   | 0.1054 (15) |
| H27 | 0.4456       | -0.1666     | 0.7869       | 0.126*      |
| C28 | 0.3383 (3)   | -0.0383 (3) | 0.7308 (2)   | 0.0828 (10) |
| C29 | 0.3250 (4)   | -0.0914 (4) | 0.6713 (4)   | 0.1158 (17) |

| Н20  | 0 3618        | -0.1660      | 0.6700       | 0 139*           |
|------|---------------|--------------|--------------|------------------|
| C30  | 0.2617 (4)    | -0.0357(4)   | 0.6188 (3)   | 0.1181 (18)      |
| H30  | 0.2533        | -0.0728      | 0.5824       | 0.142*           |
| C31  | 0.2052 (3)    | 0.0796 (3)   | 0.6155(2)    | 0.0846(11)       |
| C32  | 0.1410 (3)    | 0 1409 (4)   | 0.5584 (2)   | 0.0984 (13)      |
| H32  | 0.1332        | 0 1070       | 0.5194       | 0 118*           |
| C33  | 0.0908 (3)    | 0.2482 (4)   | 0.5601 (2)   | 0.0996 (14)      |
| H33  | 0.0481        | 0 2894       | 0.5221       | 0 119*           |
| C34  | 0 1026 (3)    | 0.2983 (3)   | 0.61885(17)  | 0.0736 (9)       |
| H34  | 0.0668        | 0.3730       | 0.6195       | 0.088*           |
| C35  | 0.2147 (2)    | 0.1351 (3)   | 0.67309 (17) | 0.0629 (7)       |
| C36  | 0.2826 (2)    | 0.0746 (2)   | 0.73160 (18) | 0.0635 (7)       |
| N7   | 0.48610 (19)  | 0.04145 (17) | 0.51715 (13) | 0.0576 (5)       |
| C37  | 0.4210 (2)    | 0.1386 (2)   | 0.47573 (14) | 0.0520 (6)       |
| C38  | 0.3927 (2)    | 0.2337 (2)   | 0.50901 (16) | 0.0608 (7)       |
| H38  | 0.4161        | 0.2321       | 0.5558       | 0.073*           |
| C39  | 0 3303 (2)    | 0 3303 (2)   | 0 47330 (16) | 0 0599 (7)       |
| H39  | 0.3127        | 0 3939       | 0 4959       | 0.072*           |
| C40  | 0.2928(2)     | 0.3353(2)    | 0.40435(15)  | 0.0526 (6)       |
| C43  | 0.2217 (3)    | 0.4439(2)    | 0.3717 (2)   | 0.0631 (7)       |
| 01   | 0.1197 (5)    | 0.4801 (7)   | 0.3911 (5)   | 0.095 (2) 0.65   |
| 02   | 0 2763 (8)    | 0.4987(8)    | 0.3310 (6)   | 0.089(3) 0.65    |
| H2A  | 0.2330        | 0.5659       | 0 3341       | 0.009 (0) 0.00   |
| 01B  | 0.1409 (11)   | 0.4604 (12)  | 0.3517 (11)  | 0.141 (8) 0.35   |
| 02B  | 0 2661 (17)   | 0 5111 (14)  | 0.3622(12)   | 0.099 (6) 0.35   |
| C41  | 0.3216 (2)    | 0.2387 (2)   | 0.37008 (14) | 0.0494 (6)       |
| C44  | 0.2883 (2)    | 0.2380 (2)   | 0.29324 (17) | 0.0586 (7)       |
| 03   | 0.2267 (4)    | 0.3186 (3)   | 0.2611 (3)   | 0.0802 (12) 0.65 |
| 04   | 0.3291 (4)    | 0.1439 (5)   | 0.2683 (4)   | 0.098 (2) 0.65   |
| H4A  | 0.2887        | 0.1363       | 0.2425       | 0.117*           |
| 03B  | 0.3059 (11)   | 0.2912 (9)   | 0.2303 (5)   | 0.116 (4) 0.35   |
| O4B  | 0.2695 (8)    | 0.1541 (8)   | 0.2944 (6)   | 0.083 (3) 0.35   |
| C42  | 0.3845 (2)    | 0.1411 (2)   | 0.40667 (15) | 0.0517 (6)       |
| H42  | 0.4023        | 0.0769       | 0.3848       | 0.062*           |
| N12  | 0.06170 (18)  | 1.02786 (18) | 0.86767 (13) | 0.0547 (5)       |
| N13  | 0.11991 (18)  | 0.94232 (17) | 0.90151 (13) | 0.0538 (5)       |
| 05   | -0.0929 (4)   | 0.9112 (3)   | 0.5944 (2)   | 0.1661 (18)      |
| 06   | -0.1637 (2)   | 1.0836 (2)   | 0.56001 (16) | 0.1144 (10)      |
| H6A  | -0.1735       | 1.1648       | 0.5767       | 0.172*           |
| 07   | -0.18108 (17) | 1.24773 (18) | 0.60126 (13) | 0.0793 (6)       |
| 08   | -0.1673 (2)   | 1.30459 (18) | 0.70774 (17) | 0.0948 (8)       |
| 09   | 0.4026 (3)    | 0.6922 (2)   | 1.0424 (2)   | 0.1316 (12)      |
| O10  | 0.4367 (2)    | 0.7670 (2)   | 1.1261 (2)   | 0.1290 (12)      |
| H10A | 0.4264        | 0.8509       | 1.1267       | 0.194*           |
| 011  | 0.3728 (3)    | 0.9370 (2)   | 1.1782 (2)   | 0.1315 (12)      |
| 012  | 0.2653 (3)    | 1.1037 (2)   | 1.15481 (17) | 0.1148 (10)      |
| C45  | 0.0172 (2)    | 1.0163 (2)   | 0.80526 (15) | 0.0519 (6)       |
| C46  | 0.0319 (3)    | 0.9203 (2)   | 0.78078 (19) | 0.0736 (8)       |
| H46  | 0.0727        | 0.8546       | 0.8060       | 0.088*           |
|      |               |              |              |                  |

| C47 | -0.0152 (3) | 0.9238 (3) | 0.7178 (2)   | 0.0824 (10) |
|-----|-------------|------------|--------------|-------------|
| H47 | -0.0078     | 0.8591     | 0.7026       | 0.099*      |
| C48 | -0.0734 (2) | 1.0197 (2) | 0.67622 (17) | 0.0662 (8)  |
| C49 | -0.0908 (2) | 1.1174 (2) | 0.70260 (15) | 0.0514 (6)  |
| C50 | -0.0443 (2) | 1.1117 (2) | 0.76747 (15) | 0.0518 (6)  |
| H50 | -0.0556     | 1.1760     | 0.7860       | 0.062*      |
| C51 | -0.1117 (3) | 1.0008 (3) | 0.6058 (2)   | 0.0994 (12) |
| C52 | -0.1511 (2) | 1.2309 (2) | 0.66752 (18) | 0.0610 (7)  |
| C53 | 0.1621 (2)  | 0.9608 (2) | 0.96310 (15) | 0.0488 (6)  |
| C54 | 0.1289 (2)  | 1.0597 (2) | 0.99084 (17) | 0.0595 (7)  |
| H54 | 0.0742      | 1.1203     | 0.9712       | 0.071*      |
| C55 | 0.1778 (3)  | 1.0679 (2) | 1.04835 (18) | 0.0651 (7)  |
| H55 | 0.1543      | 1.1352     | 1.0675       | 0.078*      |
| C56 | 0.2602 (2)  | 0.9811 (2) | 1.07910 (16) | 0.0571 (6)  |
| C57 | 0.2943 (2)  | 0.8789 (2) | 1.05090 (16) | 0.0546 (6)  |
| C58 | 0.2426 (2)  | 0.8717 (2) | 0.99353 (15) | 0.0532 (6)  |
| H58 | 0.2631      | 0.8046     | 0.9752       | 0.064*      |
| C59 | 0.3030 (3)  | 1.0095 (3) | 1.1414 (2)   | 0.0810 (9)  |
| C60 | 0.3838 (3)  | 0.7717 (3) | 1.0739 (2)   | 0.0827 (9)  |

### Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|--------------|--------------|--------------|--------------|--------------|--------------|
| Cd1 | 0.05361 (13) | 0.06166 (14) | 0.04453 (12) | -0.02190 (9) | -0.01962 (8) | -0.00342 (8) |
| N1  | 0.0808 (16)  | 0.0558 (14)  | 0.0554 (13)  | -0.0139 (12) | -0.0365 (12) | -0.0029 (10) |
| N2  | 0.0637 (14)  | 0.0519 (13)  | 0.0554 (12)  | -0.0245 (11) | -0.0103 (10) | -0.0048 (10) |
| N3  | 0.0538 (12)  | 0.0627 (14)  | 0.0449 (11)  | -0.0227 (11) | -0.0190 (9)  | -0.0039 (10) |
| N4  | 0.0521 (12)  | 0.0708 (15)  | 0.0526 (12)  | -0.0257 (11) | -0.0233 (10) | 0.0007 (11)  |
| N5  | 0.0610 (13)  | 0.0639 (15)  | 0.0584 (13)  | -0.0244 (12) | -0.0127 (11) | -0.0012 (11) |
| N6  | 0.0547 (12)  | 0.0854 (18)  | 0.0498 (12)  | -0.0323 (13) | -0.0129 (10) | -0.0117 (11) |
| C1  | 0.087 (2)    | 0.081 (2)    | 0.081 (2)    | -0.0110 (18) | -0.0500 (18) | -0.0171 (17) |
| C2  | 0.135 (3)    | 0.078 (2)    | 0.100 (3)    | -0.009 (2)   | -0.084 (3)   | -0.016 (2)   |
| C3  | 0.192 (5)    | 0.053 (2)    | 0.065 (2)    | -0.017 (2)   | -0.069 (3)   | -0.0049 (16) |
| C4  | 0.158 (3)    | 0.0394 (16)  | 0.0476 (16)  | -0.0200 (19) | -0.038 (2)   | -0.0007 (12) |
| C5  | 0.204 (5)    | 0.062 (2)    | 0.0389 (17)  | -0.041 (3)   | -0.003 (3)   | -0.0063 (15) |
| C6  | 0.179 (5)    | 0.075 (3)    | 0.070 (3)    | -0.053 (3)   | 0.027 (3)    | -0.014 (2)   |
| C7  | 0.111 (3)    | 0.0466 (17)  | 0.0665 (19)  | -0.0316 (18) | 0.0153 (18)  | -0.0100 (14) |
| C8  | 0.088 (3)    | 0.076 (2)    | 0.126 (4)    | -0.047 (2)   | 0.031 (2)    | -0.027 (2)   |
| C9  | 0.071 (2)    | 0.090 (3)    | 0.122 (3)    | -0.042 (2)   | 0.007 (2)    | -0.028 (2)   |
| C10 | 0.0635 (18)  | 0.068 (2)    | 0.089 (2)    | -0.0317 (15) | -0.0121 (16) | -0.0143 (16) |
| C11 | 0.0825 (19)  | 0.0346 (13)  | 0.0551 (15)  | -0.0213 (13) | -0.0101 (14) | 0.0010 (11)  |
| C12 | 0.100 (2)    | 0.0324 (13)  | 0.0431 (14)  | -0.0154 (14) | -0.0183 (14) | 0.0010 (10)  |
| C13 | 0.0577 (16)  | 0.0640 (18)  | 0.0541 (14)  | -0.0205 (14) | -0.0224 (12) | -0.0019 (13) |
| C14 | 0.0742 (19)  | 0.068 (2)    | 0.0602 (17)  | -0.0160 (16) | -0.0284 (15) | -0.0015 (14) |
| C15 | 0.097 (2)    | 0.0594 (19)  | 0.0598 (17)  | -0.0251 (18) | -0.0210 (16) | 0.0052 (14)  |
| C16 | 0.078 (2)    | 0.0650 (19)  | 0.0563 (16)  | -0.0317 (16) | -0.0158 (14) | 0.0008 (13)  |
| C17 | 0.100 (3)    | 0.084 (3)    | 0.094 (3)    | -0.050 (2)   | -0.015 (2)   | 0.014 (2)    |
| C18 | 0.089 (3)    | 0.116 (3)    | 0.109 (3)    | -0.066 (3)   | -0.014 (2)   | 0.005 (2)    |

| C19 | 0.0676 (19) | 0.096 (2)   | 0.0718 (19) | -0.0449 (18) | -0.0179 (15) | 0.0045 (17)  |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C20 | 0.061 (2)   | 0.136 (4)   | 0.095 (3)   | -0.053 (2)   | -0.0219 (18) | 0.005 (2)    |
| C21 | 0.0534 (18) | 0.126 (3)   | 0.091 (2)   | -0.033 (2)   | -0.0298 (17) | 0.018 (2)    |
| C22 | 0.0569 (17) | 0.090 (2)   | 0.0690 (18) | -0.0251 (16) | -0.0276 (14) | 0.0075 (16)  |
| C23 | 0.0578 (15) | 0.0749 (19) | 0.0478 (13) | -0.0322 (14) | -0.0185 (11) | -0.0052 (13) |
| C24 | 0.0620 (15) | 0.0641 (17) | 0.0421 (12) | -0.0283 (13) | -0.0173 (11) | -0.0054 (12) |
| C25 | 0.073 (2)   | 0.078 (2)   | 0.0716 (19) | -0.0264 (18) | -0.0208 (16) | 0.0133 (16)  |
| C26 | 0.074 (2)   | 0.078 (3)   | 0.105 (3)   | -0.018 (2)   | -0.014 (2)   | 0.018 (2)    |
| C27 | 0.086 (3)   | 0.059 (2)   | 0.133 (4)   | -0.023 (2)   | 0.015 (3)    | 0.004 (2)    |
| C28 | 0.069 (2)   | 0.062 (2)   | 0.104 (3)   | -0.0292 (17) | 0.0109 (19)  | -0.0153 (19) |
| C29 | 0.096 (3)   | 0.087 (3)   | 0.161 (5)   | -0.045 (3)   | 0.018 (3)    | -0.055 (3)   |
| C30 | 0.105 (3)   | 0.128 (4)   | 0.144 (4)   | -0.075 (3)   | 0.029 (3)    | -0.080(3)    |
| C31 | 0.073 (2)   | 0.120 (3)   | 0.081 (2)   | -0.060 (2)   | 0.0130 (17)  | -0.048 (2)   |
| C32 | 0.087 (2)   | 0.166 (4)   | 0.073 (2)   | -0.072 (3)   | -0.0019 (19) | -0.052 (3)   |
| C33 | 0.079 (2)   | 0.180 (5)   | 0.0632 (19) | -0.063 (3)   | -0.0178 (17) | -0.033 (2)   |
| C34 | 0.0666 (18) | 0.111 (3)   | 0.0562 (16) | -0.0403 (18) | -0.0193 (14) | -0.0155 (16) |
| C35 | 0.0541 (15) | 0.084 (2)   | 0.0579 (16) | -0.0384 (15) | 0.0067 (12)  | -0.0243 (15) |
| C36 | 0.0571 (16) | 0.0684 (19) | 0.0662 (17) | -0.0337 (15) | 0.0049 (13)  | -0.0154 (14) |
| N7  | 0.0637 (13) | 0.0574 (14) | 0.0516 (12) | -0.0198 (12) | -0.0285 (10) | 0.0084 (10)  |
| C37 | 0.0526 (14) | 0.0575 (16) | 0.0452 (13) | -0.0186 (12) | -0.0207 (11) | 0.0040 (11)  |
| C38 | 0.0716 (17) | 0.0683 (18) | 0.0506 (14) | -0.0268 (15) | -0.0311 (13) | 0.0003 (13)  |
| C39 | 0.0719 (17) | 0.0559 (17) | 0.0599 (15) | -0.0240 (14) | -0.0277 (13) | -0.0074 (13) |
| C40 | 0.0526 (14) | 0.0529 (15) | 0.0550 (14) | -0.0199 (12) | -0.0217 (11) | 0.0012 (12)  |
| C43 | 0.0640 (19) | 0.0543 (17) | 0.0762 (19) | -0.0180 (15) | -0.0359 (16) | -0.0002 (14) |
| 01  | 0.060 (3)   | 0.084 (4)   | 0.140 (5)   | -0.017 (2)   | -0.045 (3)   | -0.001 (3)   |
| O2  | 0.070 (3)   | 0.063 (4)   | 0.114 (6)   | -0.012 (2)   | -0.031 (3)   | 0.019 (3)    |
| O1B | 0.150 (12)  | 0.061 (7)   | 0.27 (2)    | -0.038 (8)   | -0.175 (14)  | 0.028 (10)   |
| O2B | 0.113 (12)  | 0.055 (6)   | 0.163 (17)  | -0.046 (8)   | -0.094 (12)  | 0.039 (8)    |
| C41 | 0.0494 (13) | 0.0536 (15) | 0.0466 (13) | -0.0177 (11) | -0.0212 (10) | 0.0014 (11)  |
| C44 | 0.0609 (16) | 0.0626 (18) | 0.0563 (16) | -0.0191 (15) | -0.0303 (13) | -0.0017 (14) |
| O3  | 0.109 (3)   | 0.065 (2)   | 0.069 (3)   | -0.017 (2)   | -0.059 (2)   | 0.0042 (19)  |
| O4  | 0.103 (4)   | 0.081 (3)   | 0.108 (5)   | 0.004 (3)    | -0.073 (3)   | -0.033 (3)   |
| O3B | 0.216 (12)  | 0.129 (9)   | 0.073 (6)   | -0.120 (9)   | -0.090 (7)   | 0.048 (6)    |
| O4B | 0.138 (9)   | 0.080 (6)   | 0.077 (6)   | -0.067 (7)   | -0.066 (6)   | 0.014 (4)    |
| C42 | 0.0540 (14) | 0.0502 (15) | 0.0501 (13) | -0.0155 (12) | -0.0215 (11) | -0.0008 (11) |
| N12 | 0.0634 (13) | 0.0537 (13) | 0.0542 (12) | -0.0239 (11) | -0.0294 (10) | 0.0053 (10)  |
| N13 | 0.0614 (13) | 0.0530 (13) | 0.0548 (12) | -0.0228 (11) | -0.0295 (10) | 0.0027 (10)  |
| 05  | 0.259 (4)   | 0.091 (2)   | 0.181 (3)   | -0.015 (2)   | -0.168 (3)   | -0.038 (2)   |
| 06  | 0.145 (2)   | 0.108 (2)   | 0.0991 (18) | -0.0198 (17) | -0.0903 (18) | -0.0079 (15) |
| 07  | 0.0750 (13) | 0.0851 (15) | 0.0726 (13) | -0.0197 (12) | -0.0455 (11) | 0.0188 (11)  |
| 08  | 0.123 (2)   | 0.0525 (13) | 0.122 (2)   | -0.0230 (13) | -0.0799 (17) | 0.0138 (13)  |
| 09  | 0.139 (3)   | 0.0675 (17) | 0.177 (3)   | 0.0176 (16)  | -0.102 (2)   | -0.0270 (18) |
| 010 | 0.127 (2)   | 0.095 (2)   | 0.159 (3)   | 0.0114 (17)  | -0.112 (2)   | -0.0156 (18) |
| 011 | 0.159 (3)   | 0.101 (2)   | 0.163 (3)   | -0.0201 (19) | -0.130 (2)   | -0.0109 (19) |
| 012 | 0.187 (3)   | 0.0809 (18) | 0.116 (2)   | -0.0481 (19) | -0.107 (2)   | -0.0005 (15) |
| C45 | 0.0580 (15) | 0.0523 (15) | 0.0498 (13) | -0.0201 (12) | -0.0269 (11) | 0.0032 (11)  |
| C46 | 0.097 (2)   | 0.0518 (17) | 0.0747 (19) | -0.0153 (16) | -0.0518 (17) | 0.0024 (14)  |
| C47 | 0.113 (3)   | 0.0549 (18) | 0.089 (2)   | -0.0175 (18) | -0.059 (2)   | -0.0120 (16) |
| C48 | 0.0746 (18) | 0.0665 (19) | 0.0618 (16) | -0.0175 (15) | -0.0382 (14) | -0.0072 (14) |

| C49 | 0.0473 (13) | 0.0580 (16) | 0.0498 (13) | -0.0184 (12) | -0.0221 (11) | 0.0036 (11)  |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C50 | 0.0552 (14) | 0.0515 (15) | 0.0548 (14) | -0.0225 (12) | -0.0235 (11) | 0.0014 (11)  |
| C51 | 0.120 (3)   | 0.090 (3)   | 0.097 (3)   | -0.016 (2)   | -0.072 (2)   | -0.018 (2)   |
| C52 | 0.0511 (15) | 0.0621 (18) | 0.0705 (17) | -0.0218 (13) | -0.0271 (13) | 0.0111 (14)  |
| C53 | 0.0534 (14) | 0.0505 (15) | 0.0501 (13) | -0.0245 (12) | -0.0233 (11) | 0.0052 (11)  |
| C54 | 0.0721 (17) | 0.0458 (15) | 0.0662 (16) | -0.0172 (13) | -0.0413 (14) | 0.0062 (12)  |
| C55 | 0.089 (2)   | 0.0464 (15) | 0.0704 (17) | -0.0236 (15) | -0.0430 (16) | 0.0002 (13)  |
| C56 | 0.0682 (17) | 0.0582 (17) | 0.0555 (15) | -0.0278 (14) | -0.0328 (13) | 0.0067 (12)  |
| C57 | 0.0543 (14) | 0.0538 (16) | 0.0586 (15) | -0.0196 (12) | -0.0272 (12) | 0.0062 (12)  |
| C58 | 0.0599 (15) | 0.0466 (14) | 0.0560 (14) | -0.0190 (12) | -0.0233 (12) | -0.0010 (11) |
| C59 | 0.111 (3)   | 0.074 (2)   | 0.081 (2)   | -0.039 (2)   | -0.061 (2)   | 0.0057 (17)  |
| C60 | 0.076 (2)   | 0.068 (2)   | 0.095 (2)   | -0.0058 (17) | -0.0465 (18) | -0.0026 (18) |
|     |             |             |             |              |              |              |

Geometric parameters (Å, °)

| Cd1—N6 | 2.327 (2) | C31—C32            | 1.398 (6)  |
|--------|-----------|--------------------|------------|
| Cd1—N2 | 2.343 (2) | C31—C35            | 1.412 (4)  |
| Cd1—N4 | 2.350 (2) | C32—C33            | 1.336 (6)  |
| Cd1—N1 | 2.350 (2) | С32—Н32            | 0.9300     |
| Cd1—N3 | 2.355 (2) | C33—C34            | 1.395 (5)  |
| Cd1—N5 | 2.367 (2) | С33—Н33            | 0.9300     |
| N1—C1  | 1.327 (4) | C34—H34            | 0.9300     |
| N1—C12 | 1.358 (4) | C35—C36            | 1.443 (4)  |
| N2—C10 | 1.321 (4) | N7—N7 <sup>i</sup> | 1.240 (4)  |
| N2—C11 | 1.353 (3) | N7—C37             | 1.430 (3)  |
| N3—C13 | 1.330 (3) | C37—C38            | 1.379 (4)  |
| N3—C24 | 1.357 (3) | C37—C42            | 1.387 (3)  |
| N4—C22 | 1.320 (4) | C38—C39            | 1.368 (4)  |
| N4—C23 | 1.354 (3) | С38—Н38            | 0.9300     |
| N5—C25 | 1.331 (4) | C39—C40            | 1.383 (3)  |
| N5—C36 | 1.353 (4) | С39—Н39            | 0.9300     |
| N6—C34 | 1.331 (4) | C40—C41            | 1.405 (4)  |
| N6—C35 | 1.342 (4) | C40—C43            | 1.492 (4)  |
| C1—C2  | 1.404 (5) | C43—O1B            | 1.164 (10) |
| С1—Н1  | 0.9300    | C43—O1             | 1.227 (6)  |
| C2—C3  | 1.344 (6) | C43—O2             | 1.266 (7)  |
| С2—Н2  | 0.9300    | C43—O2B            | 1.274 (12) |
| C3—C4  | 1.417 (6) | O2—H2A             | 0.8587     |
| С3—Н3  | 0.9300    | O2B—H2A            | 0.8314     |
| C4—C12 | 1.409 (4) | C41—C42            | 1.385 (3)  |
| C4—C5  | 1.439 (6) | C41—C44            | 1.500 (3)  |
| C5—C6  | 1.321 (6) | C44—O3B            | 1.201 (7)  |
| С5—Н5  | 0.9300    | C44—O3             | 1.209 (5)  |
| C6—C7  | 1.428 (6) | C44—O4             | 1.273 (6)  |
| С6—Н6  | 0.9300    | C44—O4B            | 1.283 (9)  |
| C7—C11 | 1.409 (4) | O4—H4A             | 0.8427     |
| С7—С8  | 1.414 (6) | O4B—H4A            | 0.8941     |
| C8—C9  | 1.328 (6) | C42—H42            | 0.9300     |
| С8—Н8  | 0.9300    | N12—N13            | 1.242 (3)  |

| C9—C10    | 1.388 (4)  | N12—C45     | 1.425 (3) |
|-----------|------------|-------------|-----------|
| С9—Н9     | 0.9300     | N13—C53     | 1.435 (3) |
| C10—H10   | 0.9300     | O5—C51      | 1.189 (5) |
| C11—C12   | 1.432 (4)  | O6—C51      | 1.298 (4) |
| C13—C14   | 1.383 (4)  | O6—H6A      | 1.1480    |
| C13—H13   | 0.9300     | O7—C52      | 1.251 (3) |
| C14—C15   | 1.360 (4)  | O7—H6A      | 1.2413    |
| C14—H14   | 0.9300     | O8—C52      | 1.236 (4) |
| C15—C16   | 1.397 (4)  | O9—C60      | 1.203 (4) |
| C15—H15   | 0.9300     | O10—C60     | 1.271 (4) |
| C16—C24   | 1.402 (4)  | O10—H10A    | 1.1042    |
| C16—C17   | 1.434 (5)  | O11—C59     | 1.256 (4) |
| C17—C18   | 1.320 (5)  | O11—H10A    | 1.4085    |
| C17—H17   | 0.9300     | O12—C59     | 1.212 (4) |
| C18—C19   | 1.435 (5)  | C45—C50     | 1.369 (3) |
| C18—H18   | 0.9300     | C45—C46     | 1.375 (4) |
| C19—C23   | 1.400 (4)  | C46—C47     | 1.379 (4) |
| C19—C20   | 1.417 (5)  | C46—H46     | 0.9300    |
| C20—C21   | 1.351 (5)  | C47—C48     | 1.390 (4) |
| С20—Н20   | 0.9300     | C47—H47     | 0.9300    |
| C21—C22   | 1.381 (4)  | C48—C49     | 1.400 (4) |
| C21—H21   | 0.9300     | C48—C51     | 1.536 (4) |
| С22—Н22   | 0.9300     | C49—C50     | 1.394 (3) |
| C23—C24   | 1.449 (4)  | C49—C52     | 1.513 (4) |
| C25—C26   | 1.382 (5)  | С50—Н50     | 0.9300    |
| С25—Н25   | 0.9300     | C53—C54     | 1.366 (4) |
| C26—C27   | 1.340 (6)  | C53—C58     | 1.379 (3) |
| C26—H26   | 0.9300     | C54—C55     | 1.375 (4) |
| C27—C28   | 1.396 (6)  | C54—H54     | 0.9300    |
| С27—Н27   | 0.9300     | C55—C56     | 1.380 (4) |
| C28—C36   | 1.406 (4)  | С55—Н55     | 0.9300    |
| C28—C29   | 1.444 (6)  | C56—C57     | 1.410 (4) |
| C29—C30   | 1.318 (7)  | C56—C59     | 1.522 (4) |
| С29—Н29   | 0.9300     | C57—C58     | 1.395 (3) |
| C30—C31   | 1.433 (6)  | C57—C60     | 1.524 (4) |
| С30—Н30   | 0.9300     | C58—H58     | 0.9300    |
| N6—Cd1—N2 | 94.62 (8)  | С28—С29—Н29 | 119.5     |
| N6        | 105.02 (7) | C29—C30—C31 | 122.7 (4) |
| N2        | 157.03 (8) | С29—С30—Н30 | 118.7     |
| N6—Cd1—N1 | 155.72 (9) | С31—С30—Н30 | 118.7     |
| N2—Cd1—N1 | 71.50 (8)  | C32—C31—C35 | 117.8 (4) |
| N4—Cd1—N1 | 93.53 (8)  | C32—C31—C30 | 123.8 (4) |
| N6—Cd1—N3 | 93.24 (8)  | C35—C31—C30 | 118.4 (4) |
| N2—Cd1—N3 | 96.00 (7)  | C33—C32—C31 | 119.7 (3) |
| N4—Cd1—N3 | 71.47 (8)  | С33—С32—Н32 | 120.1     |
| N1—Cd1—N3 | 107.65 (7) | С31—С32—Н32 | 120.1     |
| N6—Cd1—N5 | 71.49 (9)  | C32—C33—C34 | 119.8 (4) |
| N2—Cd1—N5 | 107.14 (7) | С32—С33—Н33 | 120.1     |
| N4—Cd1—N5 | 90.59 (8)  | С34—С33—Н33 | 120.1     |

| N1—Cd1—N5                 | 93.15 (8)              | N6—C34—C33                               | 122.3 (4)            |
|---------------------------|------------------------|------------------------------------------|----------------------|
| N3—Cd1—N5                 | 152.94 (8)             | N6-C34-H34                               | 118.8                |
| C1—N1—C12                 | 119.9 (3)              | С33—С34—Н34                              | 118.8                |
| C1—N1—Cd1                 | 125.3 (2)              | N6-C35-C31                               | 121.7 (3)            |
| C12—N1—Cd1                | 114.47 (18)            | N6-C35-C36                               | 119.1 (2)            |
| C10—N2—C11                | 118.5 (3)              | C31—C35—C36                              | 119.2 (3)            |
| C10—N2—Cd1                | 125.79 (19)            | N5-C36-C28                               | 121.5 (3)            |
| C11—N2—Cd1                | 115.24 (19)            | N5—C36—C35                               | 118.5 (3)            |
| C13—N3—C24                | 118.3 (2)              | C28—C36—C35                              | 119.9 (3)            |
| C13—N3—Cd1                | 126.23 (18)            | N7 <sup>i</sup> —N7—C37                  | 114.0 (3)            |
| C24—N3—Cd1                | 115 46 (16)            | $C_{38} - C_{37} - C_{42}$               | 1198(2)              |
| $C_{22} - N_{4} - C_{23}$ | 117.9 (2)              | $C_{38} - C_{37} - N_{7}$                | 116.4 (2)            |
| $C^{22}$ N4—Cd1           | 126 4 (2)              | C42 - C37 - N7                           | 123.9(2)             |
| $C_{23}$ N4 $C_{d1}$      | 115 55 (16)            | $C_{39} - C_{38} - C_{37}$               | 120.1(2)             |
| $C_{25} = N_{5} = C_{36}$ | 118.4 (3)              | $C_{39}$ $C_{38}$ $H_{38}$               | 119.9                |
| $C_{25} = N_{5} = C_{41}$ | 126.9 (2)              | $C_{37}$ $-C_{38}$ $-H_{38}$             | 119.9                |
| $C_{23}$ N5 $C_{41}$      | 120.9(2)<br>114.70(19) | $C_{38} = C_{39} = C_{40}$               | 119.9<br>121.4(2)    |
| $C_{30} = N_{5} = C_{35}$ | 114.70(17)<br>118.7(3) | $C_{38} - C_{39} - H_{39}$               | 121.4 (2)            |
| $C_{34} = N_{6} = C_{41}$ | 110.7(3)               | $C_{30} - C_{30} - H_{30}$               | 119.3                |
| $C_{35}$ N6 $C_{41}$      | 116 16 (18)            | $C_{40} - C_{40} - C_{41}$               | 119.5<br>118.7(2)    |
| $N_1 = C_1 = C_2$         | 121.8 (4)              | $C_{39} = C_{40} = C_{41}$               | 110.7(2)<br>117.5(2) |
| N1 = C1 = H1              | 121.8 (4)              | $C_{3}^{40} = C_{40}^{40} = C_{43}^{43}$ | 117.3(2)<br>122.7(2) |
| $N_1 = C_1 = M_1$         | 119.1                  | C41 - C40 - C43                          | 123.7(2)             |
| $C_2 = C_1 = H_1$         | 119.1                  | 01B - 043 - 01                           | 34.1(9)              |
| $C_{2} = C_{2} = C_{1}$   | 119.0 (4)              | 01B - 043 - 02                           | 113.9 (11)           |
| $C_{3} = C_{2} = H_{2}$   | 120.5                  | 01 - (43 - 02)                           | 125.6(7)             |
| $C_1 = C_2 = H_2$         | 120.5                  | 01B - 043 - 02B                          | 123.0(12)            |
| $C_2 = C_3 = C_4$         | 121.1 (3)              | 01 - 02B                                 | 110.8(11)            |
| $C_2 = C_3 = H_3$         | 119.4                  | 02-043-02B                               | 24.9 (12)            |
| C4—C3—H3                  | 119.4                  | O1B = C43 = C40                          | 122.9 (9)            |
| C12-C4-C3                 | 110.0 (4)              | 01 - 043 - 040                           | 122.5 (5)            |
| C12-C4-C5                 | 118.4 (4)              | 02 - (43 - (40))                         | 113.2 (6)            |
| $C_3 = C_4 = C_5$         | 125.0 (4)              | $O_{2B} = C_{43} = C_{40}$               | 111.2 (9)            |
| C6-C5-C4                  | 122.0 (4)              | C43—02—H2A                               | 108.0                |
| С6—С5—Н5                  | 119.0                  | C43 - O2B - H2A                          | 109.2                |
| С4—С5—Н5                  | 119.0                  | C42—C41—C40                              | 119.6 (2)            |
| C5-C6-C7                  | 121.5 (4)              | C42—C41—C44                              | 118.6 (2)            |
| С5—С6—Н6                  | 119.2                  | C40—C41—C44                              | 121.8 (2)            |
| С/—С6—Н6                  | 119.2                  | O3B—C44—O3                               | 48.8 (6)             |
|                           | 117.8 (3)              | O3B—C44—O4                               | 101.9 (7)            |
| C11C/C6                   | 118.5 (4)              | 03                                       | 124.8 (4)            |
| C8—C7—C6                  | 123.7 (4)              | O3B—C44—O4B                              | 121.9 (7)            |
| C9—C8—C7                  | 119.7 (3)              | O3—C44—O4B                               | 113.5 (6)            |
| С9—С8—Н8                  | 120.1                  | O4—C44—O4B                               | 35.3 (5)             |
| С7—С8—Н8                  | 120.1                  | O3B—C44—C41                              | 123.7 (5)            |
| C8—C9—C10                 | 119.4 (4)              | O3—C44—C41                               | 122.6 (3)            |
| С8—С9—Н9                  | 120.3                  | O4—C44—C41                               | 112.5 (4)            |
| С10—С9—Н9                 | 120.3                  | O4B—C44—C41                              | 111.6 (5)            |
| N2—C10—C9                 | 123.4 (3)              | C44—O4—H4A                               | 112.4                |
| N2—C10—H10                | 118.3                  | C44—O4B—H4A                              | 107.8                |

| С9—С10—Н10  | 118.3     | C41—C42—C37  | 120.3 (2) |
|-------------|-----------|--------------|-----------|
| N2-C11-C7   | 121.1 (3) | C41—C42—H42  | 119.8     |
| N2-C11-C12  | 118.5 (2) | C37—C42—H42  | 119.8     |
| C7—C11—C12  | 120.4 (3) | N13—N12—C45  | 115.8 (2) |
| N1-C12-C4   | 121.5 (3) | N12—N13—C53  | 112.3 (2) |
| N1-C12-C11  | 119.3 (2) | С51—О6—Н6А   | 114.1     |
| C4—C12—C11  | 119.2 (3) | С52—О7—Н6А   | 113.3     |
| N3—C13—C14  | 123.3 (3) | C60—O10—H10A | 104.8     |
| N3—C13—H13  | 118.3     | C59—O11—H10A | 104.9     |
| C14—C13—H13 | 118.3     | C50—C45—C46  | 119.4 (2) |
| C15—C14—C13 | 118.7 (3) | C50-C45-N12  | 114.6 (2) |
| C15-C14-H14 | 120.6     | C46—C45—N12  | 125.9 (2) |
| C13-C14-H14 | 120.6     | C45—C46—C47  | 118.4 (3) |
| C14—C15—C16 | 120.1 (3) | C45—C46—H46  | 120.8     |
| C14—C15—H15 | 120.0     | C47—C46—H46  | 120.8     |
| С16—С15—Н15 | 120.0     | C46—C47—C48  | 123.0 (3) |
| C15—C16—C24 | 117.9 (3) | С46—С47—Н47  | 118.5     |
| C15-C16-C17 | 123.2 (3) | C48—C47—H47  | 118.5     |
| C24—C16—C17 | 118.9 (3) | C47—C48—C49  | 118.5 (2) |
| C18—C17—C16 | 121.0 (3) | C47—C48—C51  | 112.5 (3) |
| C18—C17—H17 | 119.5     | C49—C48—C51  | 128.9 (3) |
| С16—С17—Н17 | 119.5     | C50—C49—C48  | 117.3 (2) |
| C17—C18—C19 | 122.4 (3) | C50—C49—C52  | 114.5 (2) |
| C17—C18—H18 | 118.8     | C48—C49—C52  | 128.1 (2) |
| C19—C18—H18 | 118.8     | C45—C50—C49  | 123.3 (2) |
| C23—C19—C20 | 117.2 (3) | C45—C50—H50  | 118.4     |
| C23—C19—C18 | 118.6 (3) | С49—С50—Н50  | 118.4     |
| C20-C19-C18 | 124.1 (3) | O5—C51—O6    | 121.7 (3) |
| C21—C20—C19 | 119.8 (3) | O5—C51—C48   | 119.4 (3) |
| C21—C20—H20 | 120.1     | O6—C51—C48   | 118.8 (3) |
| С19—С20—Н20 | 120.1     | 08—C52—O7    | 122.8 (3) |
| C20—C21—C22 | 118.6 (3) | O8—C52—C49   | 115.9 (2) |
| C20—C21—H21 | 120.7     | O7—C52—C49   | 121.3 (3) |
| C22—C21—H21 | 120.7     | C54—C53—C58  | 119.8 (2) |
| N4—C22—C21  | 124.2 (3) | C54—C53—N13  | 124.1 (2) |
| N4—C22—H22  | 117.9     | C58—C53—N13  | 116.1 (2) |
| C21—C22—H22 | 117.9     | C53—C54—C55  | 118.8 (2) |
| N4—C23—C19  | 122.2 (3) | С53—С54—Н54  | 120.6     |
| N4—C23—C24  | 118.7 (2) | С55—С54—Н54  | 120.6     |
| C19—C23—C24 | 119.1 (3) | C54—C55—C56  | 123.2 (3) |
| N3—C24—C16  | 121.7 (2) | С54—С55—Н55  | 118.4     |
| N3—C24—C23  | 118.5 (2) | С56—С55—Н55  | 118.4     |
| C16—C24—C23 | 119.8 (2) | C55—C56—C57  | 118.1 (2) |
| N5—C25—C26  | 123.1 (4) | C55—C56—C59  | 114.0 (3) |
| N5—C25—H25  | 118.5     | C57—C56—C59  | 127.8 (2) |
| С26—С25—Н25 | 118.5     | C58—C57—C56  | 117.9 (2) |
| C27—C26—C25 | 119.0 (4) | C58—C57—C60  | 113.7 (2) |
| С27—С26—Н26 | 120.5     | C56—C57—C60  | 128.5 (2) |
| C25—C26—H26 | 120.5     | C53—C58—C57  | 122.2 (2) |

| C26—C27—C28                                  | 120.6 (4) | С53—С58—Н58 | 118.9     |
|----------------------------------------------|-----------|-------------|-----------|
| С26—С27—Н27                                  | 119.7     | С57—С58—Н58 | 118.9     |
| С28—С27—Н27                                  | 119.7     | O12-C59-O11 | 122.1 (3) |
| C27—C28—C36                                  | 117.4 (4) | O12—C59—C56 | 117.3 (3) |
| C27—C28—C29                                  | 123.8 (4) | O11—C59—C56 | 120.6 (3) |
| C36—C28—C29                                  | 118.7 (4) | O9—C60—O10  | 120.9 (3) |
| C30—C29—C28                                  | 120.9 (4) | O9—C60—C57  | 119.1 (3) |
| С30—С29—Н29                                  | 119.5     | O10-C60-C57 | 119.9 (3) |
| Symmetry codes: (i) $-x+1$ , $-y$ , $-z+1$ . |           |             |           |

Hydrogen-bond geometry (Å, °)

| D—H···A      | <i>D</i> —Н | H···A | $D \cdots A$ | D—H··· $A$ |
|--------------|-------------|-------|--------------|------------|
| O6—H6A…O7    | 1.15        | 1.24  | 2.386 (4)    | 174        |
| O10—H10A…O11 | 1.10        | 1.41  | 2.367 (4)    | 141        |



Fig. 1



Fig. 2